Minors and Dimension
نویسنده
چکیده
It has been known for 30 years that posets with bounded height and with cover graphs of bounded maximum degree have bounded dimension. Recently, Streib and Trotter proved that dimension is bounded for posets with bounded height and planar cover graphs, and Joret et al. proved that dimension is bounded for posets with bounded height and with cover graphs of bounded tree-width. In this paper, it is proved that posets of bounded height whose cover graphs exclude a fixed topological minor have bounded dimension. This generalizes all the aforementioned results and verifies a conjecture of Joret et al. The proof relies on the Robertson-Seymour and Grohe-Marx graph structure theorems.
منابع مشابه
Comparison of self-control and metacognition components in normal minors and juvenile delinquents at correction and rehabilitation centers
Self-control and cognition are among the factors involved in the tendency toward delinquency. The aim of this study was to compare self-control and metacognition components in normal minors and juvenile delinquents at correction and rehabilitation centers. This was a causal-comparative descriptive study. The statistical sample included 70 juvenile delinquents (55 boys and 15 girls), selected...
متن کاملOn Topological Minors in Random Simplicial Complexes
Simplicial Complexes. A (finite abstract) simplicial complex is a finite set system that is closed under taking subsets, i.e., F ⊂ H ∈ X implies F ∈ X. The sets F ∈ X are called faces of X. The dimension of a face F is dim(F ) = |F | − 1. The dimension of X is the maximal dimension of any face. A k-dimensional simplicial complex will also be called a k-complex.
متن کاملThe Gram Dimension of a Graph
The Gram dimension gd(G) of a graph is the smallest integer k ≥ 1 such that, for every assignment of unit vectors to the nodes of the graph, there exists another assignment of unit vectors lying in R, having the same inner products on the edges of the graph. The class of graphs satisfying gd(G) ≤ k is minor closed for fixed k, so it can characterized by a finite list of forbidden minors. For k ...
متن کاملOn the Positive Harris Recurrence for Multiclass Queueing Networks: a Uniied Approach via Uid Limit Models
A heavy traac limit theorem for networks of queues with multiple customer types. 27 We now compute the principal minors of D k 2 and D k 3. First consider D k 2. All the principal minors of order 2 are equal to 1. The principal minor corresponding to f1; 3; 4g is equal to 1 + 3 1 3 4 == 2 , and the remaining principal minors of order 3 are equal to 1. The determinant of the matrix itself is 1 ?...
متن کاملHigher Minors and Van Kampen’s Obstruction
We generalize the notion of graph minors to all (finite) simplicial complexes. For every two simplicial complexes H and K and every nonnegative integer m, we prove that if H is a minor of K then the non vanishing of Van Kampen’s obstruction in dimension m (a characteristic class indicating non embeddability in the (m−1)-sphere) for H implies its non vanishing for K. As a corollary, based on res...
متن کامل